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1 Introduction

The focus of this paper is on deep Bayesian non-parametric models and, more specifically, on
admixture models of this kind. In admixture or mixed membership models [5], each data item is
modeled as a mixture over components, and such models have significantly richer representational
power compared to mixture models and also wide applicability. The Hierarchical Dirichlet Process
(HDP) [5] extends the notion of finite admixture models, famously captured by Latent Dirichlet
Allocation (LDA) [4], to infinite mixture components. The HDP does this by coupling Dirichlet
Processes (DP) [2], such that a draw from a DP serves as the base distribution for another DP. In
this paper, we explore how such layers of admixtures can be nested arbitrarily deeply. While the
Bayesian framework serves as a natural protection against overfitting, we would like to provide
as much flexibility to a model within this framework. Layers of admixtures, instead of mixtures,
provides such flexibility. The Author-Topic Model [9] explores such a two level model in the finite
setting, where documents are mixtures over ‘topics’ and topics are mixtures over ‘authors’. We
explore such models in the infinite setting, which are also arbitrarily deep - where the representation
consists of layers of entities, and each entity is a mixture over entities at the previous layer.

We build upon the idea of the nested Dirichlet Process [8], which is a two level ‘nesting’ of Dirichlet
processes - where one Dirichlet Process is the base distribution of another Dirichlet Process. We
extend this idea to show that layers of admixtures can be created by nesting Hierarchical Dirichlet
Processes in a similar way. Such a nesting can then be made arbitrarily deep - hence the name deep
Nested Hierarchical Dirichlet Processes.

We note that the nested CRP [3] and its extension (also interestingly called the nested HDP) [7], while
being deep non-parametric models, are not deep admixture models in our sense. In these, ‘topic’
distributions are structured as an arbitrarily deep and arbitrarily wide tree, where a topic at any layer
has exactly one topic from the previous layer as its ‘parent’. Our model is significantly more flexible
by allowing entities at each layer to have a distribution over all entities at the previous layer.

We further explore relations between such an infinite admixture model and finite counterparts, and
observe that the deep nested HDP arises as infinite limits of two different constructions of deep finite
admixture models. We then study sampling based inference algorithms for the deep nHDP based
on an equivalent Chinese Restaurant Process representation, which we call the deep nested Chinese
Restaurant Franchise. We extend two different sampling algorithms that have been proposed for the
HDP - a direct and an indirect sampling scheme based on table indexes. While these two algorithms
are known to perform similarly for the single-layer HDP, we show that, when extended to multiple
layers, the direct sampling scheme scales linearly with number of layers, while the indirect sampling
scheme has complexity growing exponentially with number of layers.
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We demonstrate this difference in complexity of the two sampling algorithms using experiments on
text corpora, while also showing that deep non-parametric admixture models show better generaliza-
tion performance than their shallow counterparts.

In an earlier conference paper [1], we had introduced the notion of nesting between HDPs to create
2-layer author topic model. In this paper, we have extended the definition for deep nesting, formally
studied the relationship with finite admixture models, extended the inference algorithms for arbitrary
number of layers and identified how they differ in complexity beyond a single layer.

2 Model

We define a multi-layer Nested Hierarchical Dirichlet Processes which has an HDP at every layer.
Let L denote the number of layers of nesting, indexed by l ∈ {0, ..., L− 1}. The base distribution of
HDP at layer l is the HDP at layer l − 1 and we term this as nesting of two HDPs.

Stick-breaking Construction: For creating an admixture at layer l ∈ {0, ..., L− 1} we follow the
HDP process. We create an infinite set of entities from previous layer l − 1 sampled from base
distribution Bl: {φlk}∞k=1 ∼ Bl and a global entity distribution for this layer over these: GlB =∑∞
k=1 β

l
kδφl

k
, where the weights are drawn from a stick-breaking distribution, βl ∼ GEM(γl). An

infinite set of entities at layer l are defined over layer l− 1 entities, where entity r in layer l is defined
by its own distinct local entity distribution: Glr =

∑∞
k=1 π

l
rkδφl

k
. The weights are drawn from a DP

with the global popularities of layer l − 1 entities as the base distribution: πlr ∼ DP (αl, βl).

We can recognize this overall construction for layer l entities as a draw from an HDP, which we name
as H l: Glr ∼ HDP(αl, γl, Bl) ≡ H l. In our nested structure, H l is the base distribution for next
layer: Bl+1 = H l. Note that this can equivalently be represented as Bl+1 = HDP(αl, γl, Bl) =
HDP(αl, γl,HDP(αl−1, γl−1, Bl−1)). We define this nested structure as the nested HDP (nHDP)
and write - Bl+1 = nHDP(l + 1, {αl, γl}, ...., {α0, γ0}, H̄)

The details of the generative process are as follows. First the distributions for the ‘entities’ at different
layers are sampled starting with the ‘topics’ at layer l = 0.

prior for topics B0 = H̄ = Dir(γ0)

layer l ≤ L
φlk ∼ Bl

global weight for l-entity βl ∼ GEM(γl)

GlB =
∑
k=1,...

βlkδφl
k
∼ Dl = DP (γl, Bl)

l+1 entity’s wt for l-entity πlr ∼ DP (αl, βl)

Glr =
∑
k

πlrkδφl
k
∼ H l = HDP (αl, γl, Bl)

coupling between layers Bl+1 = H l = nHDP(l + 1, {αl, γl}, · · · , {α0, γ0}, H̄)

There is an equivalent indirect representation of the local topic preferences using topic samples (also
called tables) [10]. Let {ψljt}∞t=1 denote the samples/tables for the jth entity at layer l drawn from
the topic distributions at the previous layer: φljt ∼ G

l−1
B , and {kljt}∞t=1 denote the set of indexes of

the layer l − 1 topics corresponding to each topic sample. Their corresponding weights {π̄ljt}∞t=1 are
drawn from a stick-breaking distribution GEM(αl), πlj ∼ GEM(αl).

l+1 entity’s wt for l-table π̄lr∼ GEM(αl)

Glr =
∑
t

π̄lrtδψl
rt
∼ H l = HDP (αl, γl, Bl)
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Finally, the data items are generated by sampling entities at each layer l as θlji ∼ θl+1
ji ∈ {φl1 . . .}.

The data item (word) is sampled at the final layer as xji ∼ θ0ji. Note that in the document modeling
use-case, the grouping of words with respect to the level L-entity is observed and termed as a
document.

Restaurant Process Representation: Just as the HDP has a restaurant process interpretation -
the Chinese Restaurant Franchise (CRF)[10] - for the deep nested HDP we show an equivalent
interpretation in terms of multiple layers of nested CRFs, corresponding to the multiple layers of HDP.
In the restaurant interpretation, each group r represents a restaurant at each layer l, the entity samples
ψlrt are called tables, and the sampled entities φlk are called dishes, which get served at tables.

For a given entity layer l ∈ {0, ..., L − 1}, assume K entities {φl1, ..., φlK} have been drawn from
base distribution Bl. Let (ψlr1, ..., ψ

l
r,t−1) be sequence of entity samples / tables drawn from GlB

for rth entity of this layer and an indirect representation of Glr is constructed using entity samples
as above. Due to the nested structure, the predictive distribution for the draw of layer l entity for
word ji denoted by θlji is additionally conditioned on the corresponding draw at layer l + 1 i.e. θl+1

ji .
Given that θl+1

ji = Glr, θ
l
ji ∼ θ

l+1
ji is drawn by integrating out the group level distribution Glr.

θlji|θl+1
ji = Glr, θ

l
11, . . . , θ

l
1N1

, θl21, . . . , θ
l
j,i−1, α

l, GlB ∼
ml

r·∑
t=1

nlrt
i− 1 + αl

δψl
rt

+
αl

nlr·· + αl
GlB (1)

where nlrt is the number of times any of {θl11, . . . , θl1N1
, θl21, . . . , θ

l
j,i−1} got assigned to the tth

atom ψlrt of restaurant r and ml
rk =

∑
t δ(ψ

l
rt, φ

l
k) is the number of entity samples in rth restaurant

assigned to previous layer entity φlk.

The predictive distribution of tth entity sample, after integrating out GlB is as follows:

ψlrt|ψ11, ψ12, . . . , ψ21, . . . ,ψrt−1, γ, B
l ∼

Kl∑
k=1

ml
·k

m·· + γl
δφl

k
+

γl

ml
·· + γl

Bl (2)

where ml
.k is the number of entity samples across all restaurants in layer l assigned to kth entity φlk

of previous layer.

Relation with deep finite admixture models: The HDP can be shown to arise as the infinite limit
of two different finite admixture models [10]. We show that a similar relationship persists across the
nested coupling between the deep nHDP and deep finite admixture models.

Consider a L-layer admixture model Gj(L, {Kl}) with Kl entities at layer l defined using direct
sampling of entities.

Theorem 1 For each l ∈ {0, . . . , L}, as Kl →∞, the finite layer approaches an nHDP.

lim
Kl→∞

Gj(L, {Kl}) = GLj ∼ nHDP (L, {αl, γl}, H̄) (3)

A similar result holds for the indirect L-layer finite admixture model construction Gj(L, {Kl}, {T l})
with Kl entities and T l entity samples or tables at layer l.

Theorem 2 For each l ∈ {0, . . . , L}, asKl →∞, and T lr →∞,∀r ∈ {1, . . . ,Kl}, the generative
process of multi-layer finite admixture model is equivalent to the nHDP.

lim
Kl,T l→∞

Gj(L, {Kl}, {T l}) = GLj ∼ nHDP (L, {αl, γl}, H̄) (4)

Deep Nested Non-parametric Flexible Models: We end with a discussion of an enhancement to our
model, where each layer has the flexibility to be either an admixture or a mixture, while retaining its
non-parametric nature. This may be useful in the presence of specific knowledge about the relations
between entities in the domain. To achieve a mixture, instead of an admixture, at any layer, we replace
an HDP-HDP nesting with a DP-HDP nesting (where an HDP has a DP as the base distribution) or a
DP-DP nesting, depending on the nature of the subsequent layer. The instance of this model with a
mixture at every layer is directly related to the nCRP [3]. The inference algorithms that we propose
for the nested HDP in the next section can be modified in a reasonably straight-forward manner for
these flexible variants.

3



3 Inference

We use Gibbs sampling for approximate inference. The conditional posterior for these variables can
be derived from the nCRF conditionals. We propose two inference schemes, building upon similar
schemes for the HDP:

Indirect Sampling: The conditional distributions from the nCRF scheme lend themselves to an
inference algorithm. Hence, we sample at every level l ∈ {0, . . . , L}, the table assignments tlji, the
tth level table for customer i of the j document, and dish assignments klrt for tables t at restaurant
r at level l. We refer to this as the nCRF index sampling inference scheme. However unlike the
inference for a single level HDP, a naive approach of sampling all the above indices is intractable
leading to an exponential complexity at each level due to the tight coupling between the variables.

Lemma: The complexity of the nCRF index sampling scheme is O((TLmax)L+1MN) +
O(LKL

max(TLmax)S
max

) where Smax is intuitively the upper bound on the count of all data items
(words) assigned to a single table at a specific restaurant at a specific level. , Kl

max is the maximum
number of dishes at any level and TLmax is the maximum number of tables in a single restaurant at any
level, M the total number of documents and Nmax the maximum number of words in any document.

Direct Sampling: We propose an alternative nCRF direct sampling scheme, similar to the direct
sampling scheme in [10] that samples the dishes zlji at each level l for customer i from the jth
document conditioned on dish assignments at the remaining levels.

p(zlji = p|zl−ji, zl+1
ji = r, zl−1ji = q, zl−ji,m, β,x) ∝ p(zlji = p|zl−ji, zl+1

ji = r)p(zl−1ji = q|zl−1−ji , z
l
ji = p)

The first term is the predictive distribution of zlji given the level l + 1 dish assignment r, while the
second term arises from the previous level dish assignment q that depends on the value of zlji. Hence,
p(zlji = p|zl−ji, z

l+1
ji = r) can be viewed as consisting of two terms. One from picking an existing

table in restaurant r with dish assignment p and one from creating a new table in restaurant r at level
l and assigning the dish p to it.

p(zlji = p|zl−ji, z
l+1
ji = r) ∝ nl

rp+α
lβl

p

nl
r.+α

l for an existing dish and αlβl
new

nl
r.+α

l for a New dish. Similarly,

p(zl−1ji = q|zl−1−ji , zlji = p) ∝ nl−1
pq +αl−1βl−1

q

nl−1
p. +αl−1

for and Existing dish and αl−1βl−1
new

nl−1
p. +αl−1

for a new dish.

We sample β as (βl1, β
l
2 . . . β

l
Kl , βnew) ∼ Dir(ml

.1,m
l
.2 . . .m

l
.K , γ

l). We adapt the method from [6]
for sampling the table counts ml

rk.

Lemma: In each iteration, the complexity of direct sampling algorithm at layer l is O(MNmaxK
l
max)

where M is the number of documents, Nmax is the maximum number of words in any document and
Kl
max is current number of entities at layer l.

4 Experiments

Datasets: We use the following publicly available publication datasets for our experimental analysis.
The NIPS dataset1 is a collection of NIPS proceedings (volume 0-12). with 1,740 documents
contributed by a total of 2,037 authors, with total 2,301,375 word tokens resulting in a vocabulary of
13,649 words.

Perplexity with Number of Layers: We observe that addition of non-parametric layers lead to
better generalization performance over a finite model. Also a deeper model with more layers leads to
better generalization performance

Comparing Direct and Indirect Sampling: We run the direct sampling and the Indirect sampling
algorithm, on a two level nested non-parametric flexible model (DP-HDP model) and a comparison
of run-time is shown in the figure. We observe that even for 2 layers, direct sampling scheme is
significantly faster than the indirect sampling scheme.

1http://www.arbylon.net/resources.html
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Model Finite nHDP nHDP
Model 2 level 1 level 2 level
Perplexity 2783 1775 1247

Table 1: Perplexity of Finite-2Level,
nHDP-1Level and nHDP-2Level for
NIPS
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Table 2: Comparing run-time of two layer flexible
nHDP (the DP-HDP) model

5 Conclusion

We have proposed nested Hierarchical Dirichlet Processes(nHDP) for deep multilevel non-parametric
admixture modeling. We further explore relations between such a nested infinite admixture model
and it’s finite counterparts, and show that the deep nested HDP arises as infinite limit of deep finite
admixture models. We have explored two techniques for posterior inference based on the Gibbs
sampling and show that the direct sampling technique scales efficiently for arbitrarily deep models.
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